

EARS RT03S Diarization

Douglas Reynolds, Pedro Torres, Rishi Roy

20 May 2003

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) under Air Force contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

1 DAR 1/22/2003

Outline

- CTS Diarization
 - System description
 - Extraction of other metadata
 Landline vs. Cellular
 Language identification
 - Analysis of results
- BNEWS Diarization
 - System description
 - Analysis of results
- Conclusions

EARS PI UCB 2 DAR 1/22/2003 MIT Lincoln Laboratory •

EARS PI UCB 5 DAR 1/22/2003

CTS Diarization

Gender/Channel Classifier

- Classifier has 14 channel models
 - M/F Carb/Elec from Swb2 phase1 (4)
 - M/F from Swb cell part1 (2)
 - M/F Analog/Digital from OGI National Cell (4)
 - M/F from TIMIT [telephone band] (2)
 - M/F from Hub4-96 [telephone band] (2)
- Bayes Classification

$$\begin{aligned} &\operatorname{Pr}(\mathit{Male} \mid X) = \frac{1}{M} \sum p(X \mid \mathsf{malemodels}) \\ &\left(\frac{1}{M} \sum p(X \mid \mathsf{malemodels}) + \frac{1}{F} \sum p(X \mid \mathsf{femalemodels})\right) \\ &GID_label(X) = \begin{cases} &\mathit{Male} \quad if \ \operatorname{Pr}(\mathit{Male} \mid X) > 0.5 \\ &\mathit{Female} \quad if \ \operatorname{Pr}(\mathit{Male} \mid X) < 0.5 \end{cases} \\ &\operatorname{Pr}(\mathit{Land} \mid X) = \frac{1}{L} \sum p(X \mid \mathsf{landmodels}) \\ &\left(\frac{1}{L} \sum p(X \mid \mathsf{landmodels}) + \frac{1}{C} \sum p(X \mid \mathsf{cellmodels})\right) \\ &\mathit{CID_label}(X) = \begin{cases} &\mathit{Land} \quad if \ \operatorname{Pr}(\mathit{Land} \mid X) > 0.5 \\ &\mathit{Cell} \quad if \ \operatorname{Pr}(\mathit{Land} \mid X) < 0.5 \end{cases} \end{aligned}$$

EARS PI UCB 6

MIT Lincoln Laboratory

MIT Lincoln Laboratory

CTS Diarization

Classification Results

- Gender classification (eval03 English CTS diary)
 - No errors
- Channel classification (eval03 English CTS)

	Land	Cell
Land+Cordless	86 (96%)	4
Cell	6	48 (89%)

• Language classification (eval03 all CTS)

	Arabic	English	Mandarin
Arabic	20 (83%)	2	2
English	0	144 (100%)	0
Mandarin	0	0	24 (100%)

EARS PI UCB 9 DAR 1/22/2003 MIT Lincoln Laboratory

Outline

- CTS Diarization
 - System description
 - Analysis of results
 - Extraction of other metadata
 Landline vs. Cellular

Language identification

- BNEWS Diarization
 - System description
 - Analysis of results
- Conclusions

EARS PI UCB 10 DAR 1/22/2003 MIT Lincoln Laboratory

BNEWS Diarization

Change Detection

- Used BIC based change detection* algorithm
- Approach: Search for putative change points using a penalized likelihood ratio test
 - Growing search window to find putative change points
 - Uses first pass T² distance to identify initial change points (Dragon)

$$\Delta BIC = -\log \frac{p(z \mid \lambda_z)}{p(x \mid \lambda_x)p(y \mid \lambda_y)} - \alpha P$$

 $\alpha = BIC$ weight P = BIC penalty For full covariance Gaussians

Putative change point if Δ BIC > 0

 $P = 1/2(d+1/2d(d+1)) \log N$

- Over segmentation OK since clustering can recombine
- Worked very well for BNEWS data
 - Best at detecting segment > 2s in duration
 - Not very effective for fast interchange (conversational speech)

**Speaker, Environment and Channel Change Detection and Clustering via the Bayesian Information Partizized Criterion", S. Chen and P. Gopalakrishnam, 1998 DARPA Broadcast News Workshop

BNEWS Diarization

Classification

- Trained GMM classifier to label segments as
 - Speech : pure speech, speech+music, speech+other
 - Music
 - Other: all other background noises
- Models trained using annotations from hub96 'a' and 'b' shows
 - Tested using segment labels from all other hub96 shows
- Results (%correct)
 - Good speech and music detection
 - 'Other' is hard to characterize
- GID models
 - One male and one female from hub96

	Hypothesis			
~ —		speech	non-speech	
	speech	96.9		
	speech+music	89.9		
en (speech+other	94.3		
Эe	music		88.5	
	other		55.0	

EARS PI UCB 13 DAR 1/22/2003 **MIT Lincoln Laboratory**

BNEWS Diarization

Clustering

- Used a tied mixture agglomerative clustering with generalized likelihood ratio (GLR) distance measure*
 - 0) Initialize leaf clusters with segments from SCD.
 - 1) Compute all pair-wise distances using GLR
 - 2) Merge closest clusters
 - 3) Update distances of remaining clusters to new cluster
 - 4) Iterate steps 1-3 until stopping criteria met

$$d(x, y) = -\log \frac{p(z \mid \lambda_z)}{p(x \mid \lambda_x)p(y \mid \lambda_y)}$$

x,y = cluster segments

z = merge of segments x, y

 λ_x = pdf model for segment x

 $p(x|\lambda_x) = likelihood of segment x$

- Segment pdf is a tied GMM
 - Train GMM bases using entire file
 - ML estimate of mixture weights for each segment
 - Simple averaging of counts when merging segments
- Used a BIC based stopping criteria
 - Stop clustering when $\triangle BIC_{TGMM} > 0$

 $\Delta BIC_{TGMM} = d(c1, c2) - \alpha(\frac{1}{2}m\log N)$

EARS PI UCB 14 DAR 1/22/2003 MIT Lincoln Laboratory
"Segmentation of Speech using Speaker Identification," Wilcox, et. al ICASSP94

Conclusions

CTS diarization

- Energy based SAD works well on this data
- Channel and language classification can be done with high accuracy
- Multi-speakers per side next challenge Is this in future data?

• BNEWS diarization

- See CUED talk later about relation to STT and advert removal
- Need better control of clustering stopping point
 - Under clustering some shows
 - Per-gender/condition clustering
- Revisit re-segmentation

EARS PI UCB 17 DAR 1/22/2003 MIT Lincoln Laboratory